Example 1 : Oilfield Chemistry

Complex challenge			Proposed solution		
How can we design, predict, improve the properties of oilfield chemicals in the complex upstream operations during the different development phases of oil & gas fields?			An unstructured understanding of the with the application of and the ability to de EOR, reservoir moni drilling optimization.	program that provides a deep e underlying mechanisms associated of oilfield chemicals in upstream E&P evise new solutions for challenges in toring, productivity enhancement, and	
Major Needed skills i		n the discipline	If taken alone		
Petroleum Engineering	7 courses	Appropriate understanding, design, and execution of upstream operations		Insufficient background on chemistry	
Chemistry	9 courses	In depth understanding of organic and inorganic chemistry		Lack of understanding the design aspects of upstream operations	
Geology	2 courses	Knowledge of rock types, rock		Limited understanding of fluid/rock	

Summary of degree requirement of oilfield chemistry					
Areas	Credit hours	Areas	Credit hours		
Math & Science	28 or 29	General Studies	22		
Digital and Business foundation	12	Major depth	67		
Total	129 or 130				

compositions, and textures

interactions and engineering design

Example 2 : Climate resilience engineering

Complex challenge	Proposed solution		
How can we harmonize ongoing technological innovation with the complexity of Earth's natural systems to mitigate the impacts of anthropogenic climate change?	need for gaining a deep appreciation for the way our planet's natural systems operate, while also gaining the technical skill set necessary to successfully design innovative solutions in energy, infrastructure, or agricultural systems.		

Major	Needed skills in the discipline	If taken alone
Mechanical Engineering	practical design and fabrication of products	limit the number of classes to address resilience challenges
Civil and Environmental Engineering	energy-efficient infrastructure, climate change and pollutants	Narrow scope within the built environment
Bioengineering	engineered organisms in agricultural, energy, or environmental pollutant management systems	Absence of energy or infrastructure components critical to any resilient system

https://ughb.stanford.edu/majors-minors/individually-designed-major-engineering

Solving a complex issue, the BS-X takes a cross-disciplinary approach

Example 2 : Biomimetic Design Engineering

130

Total

Complex challenge				Proposed solution		
How can we understand and learn from the nature's brilliance to address the intricate challenges across diverse domains, from developing advanced materials and energy-efficient technologies to addressing complex ecological and healthcare issues.			e nature's brilliance to liverse domains, from y-efficient technologies ncare issues.	harnessing the wealth of knowledge derived from nature's designs to create sustainable and efficient designs and technologies. This interdisciplinary approach, integrating biology with design and materials, aims to pave the way for advancements that not only address intricate challenges but also contribute to a more harmonious and sustainable coexistence with our environment.		
Major			Needed skills in the discipline		If taken alone	
Mechanical engineering	6 cc	ourses	practical design and fabrication of products		Limited knowledge about biology and materials	
Materials science engineering	5 courses		Understanding of materials properties		Limited exposure to design and biology	
Bioengineering	7 cc	ourses	Animal and or adaptation to	ganic species environment	limited exposure to materials and product design	
Summary of degree requirement of oilfield chemistry						
Areas		Cre	edit hours	Areas	Credit hours	
Math & Science			29	General Studies	22	
Digital and Business foundation		12		Major depth	67	