Selected topics from linear algebra, multivariate calculus, and optimization for Data Science with an emphasis on the implementation using numerical and symbolic software, toolboxes, and libraries for data science like NumPy, SciPy, Pandas, SymPy. Topics include data transformation using linear algebra, vector spaces, linear transformations, matrix representations, matrix decompositions (eigenvectors, LU, QR, SVD, Cholesky); multivariate calculus for continuous, convex, and non-convex optimization methods; Basic neural network design