Methods of estimation. Properties of estimators: consistency, sufficiency, completeness and uniqueness. Unbiased estimation. The method of moments. Maximum likelihood estimation. Techniques for constructing unbiased estimators and minimum variance unbiased estimators. Bayes estimators. Asymptotic property of estimators. Introduction to confidence intervals. Confidence intervals for parameters of normal distribution. Methods of finding confidence intervals. Fundamental notions of hypotheses testing. The Neyman-Pearson lemma. Most powerful test. Likelihood ratio test. Uniformly most powerful tests. Tests of hypotheses for parameters of normal distribution. Chi-square tests, t-tests, and F-tests. Prerequisites: STAT 502. Cannot be taken for credit with MATH 561 and MATH 563.
Pre-requisites: STAT501 Or STAT501